direct product, metabelian, soluble, monomial, A-group
Aliases: C4×C24⋊C5, C24⋊C20, C25.C10, (C24×C4)⋊C5, C2.1(C2×C24⋊C5), (C2×C24⋊C5).2C2, SmallGroup(320,1584)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C25 — C2×C24⋊C5 — C4×C24⋊C5 |
C24 — C4×C24⋊C5 |
Generators and relations for C4×C24⋊C5
G = < a,b,c,d,e,f | a4=b2=c2=d2=e2=f5=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, fef-1=b >
Subgroups: 732 in 147 conjugacy classes, 9 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C2×C4, C23, C10, C22×C4, C24, C24, C20, C23×C4, C25, C24×C4, C24⋊C5, C2×C24⋊C5, C4×C24⋊C5
Quotients: C1, C2, C4, C5, C10, C20, C24⋊C5, C2×C24⋊C5, C4×C24⋊C5
(1 8 11 17)(2 9 12 18)(3 10 13 19)(4 6 14 20)(5 7 15 16)
(1 11)(2 12)(4 14)(5 15)(6 20)(7 16)(8 17)(9 18)
(1 11)(2 12)(8 17)(9 18)
(1 11)(3 13)(8 17)(10 19)
(1 11)(2 12)(3 13)(5 15)(7 16)(8 17)(9 18)(10 19)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
G:=sub<Sym(20)| (1,8,11,17)(2,9,12,18)(3,10,13,19)(4,6,14,20)(5,7,15,16), (1,11)(2,12)(4,14)(5,15)(6,20)(7,16)(8,17)(9,18), (1,11)(2,12)(8,17)(9,18), (1,11)(3,13)(8,17)(10,19), (1,11)(2,12)(3,13)(5,15)(7,16)(8,17)(9,18)(10,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)>;
G:=Group( (1,8,11,17)(2,9,12,18)(3,10,13,19)(4,6,14,20)(5,7,15,16), (1,11)(2,12)(4,14)(5,15)(6,20)(7,16)(8,17)(9,18), (1,11)(2,12)(8,17)(9,18), (1,11)(3,13)(8,17)(10,19), (1,11)(2,12)(3,13)(5,15)(7,16)(8,17)(9,18)(10,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20) );
G=PermutationGroup([[(1,8,11,17),(2,9,12,18),(3,10,13,19),(4,6,14,20),(5,7,15,16)], [(1,11),(2,12),(4,14),(5,15),(6,20),(7,16),(8,17),(9,18)], [(1,11),(2,12),(8,17),(9,18)], [(1,11),(3,13),(8,17),(10,19)], [(1,11),(2,12),(3,13),(5,15),(7,16),(8,17),(9,18),(10,19)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)]])
G:=TransitiveGroup(20,75);
32 conjugacy classes
class | 1 | 2A | 2B | ··· | 2G | 4A | 4B | 4C | ··· | 4H | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 20A | ··· | 20H |
order | 1 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 5 | ··· | 5 | 1 | 1 | 5 | ··· | 5 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | ··· | 16 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 |
type | + | + | + | + | |||||
image | C1 | C2 | C4 | C5 | C10 | C20 | C24⋊C5 | C2×C24⋊C5 | C4×C24⋊C5 |
kernel | C4×C24⋊C5 | C2×C24⋊C5 | C24⋊C5 | C24×C4 | C25 | C24 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 4 | 8 | 3 | 3 | 6 |
Matrix representation of C4×C24⋊C5 ►in GL5(𝔽41)
32 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 32 |
40 | 0 | 0 | 0 | 0 |
25 | 1 | 0 | 0 | 0 |
31 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
23 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
4 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
10 | 0 | 40 | 0 | 0 |
37 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
10 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
18 | 0 | 0 | 0 | 40 |
16 | 39 | 0 | 0 | 0 |
0 | 25 | 1 | 0 | 0 |
0 | 31 | 0 | 1 | 0 |
0 | 4 | 0 | 0 | 1 |
0 | 23 | 0 | 0 | 0 |
G:=sub<GL(5,GF(41))| [32,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,32],[40,25,31,0,23,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1],[40,0,0,4,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40],[1,0,10,37,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1],[1,0,10,0,18,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40],[16,0,0,0,0,39,25,31,4,23,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
C4×C24⋊C5 in GAP, Magma, Sage, TeX
C_4\times C_2^4\rtimes C_5
% in TeX
G:=Group("C4xC2^4:C5");
// GroupNames label
G:=SmallGroup(320,1584);
// by ID
G=gap.SmallGroup(320,1584);
# by ID
G:=PCGroup([7,-2,-5,-2,-2,2,2,2,70,2250,3161,4632,7363]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=b^2=c^2=d^2=e^2=f^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,f*e*f^-1=b>;
// generators/relations